Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.10.20229294

ABSTRACT

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System shows that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrate cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with SARS-CoV-2 in the presence of interleukins, with clinical findings, to investigate plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes, from healthy human subjects, with SARS-CoV-2 in the absence and presence of interleukins. We find that interleukin treatment and infection results in disorganization of myofibrils, extracellular release of troponin-I, and reduced and erratic beating. Although interleukins do not increase the extent, they increase the severity of viral infection of cardiomyocytes resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health system show that a significant portion of COVID-19 patients without prior history of heart disease, have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection can underlie the heart disease in COVID-19 patients.


Subject(s)
COVID-19 , Heart Diseases
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.04.20090944

ABSTRACT

Importance: Preliminary reports indicate that acute kidney injury (AKI) is common in coronavirus disease (COVID)-19 patients and is associated with worse outcomes. AKI in hospitalized COVID-19 patients in the United States is not well-described. Objective: To provide information about frequency, outcomes and recovery associated with AKI and dialysis in hospitalized COVID-19 patients. Design: Observational, retrospective study. Setting: Admitted to hospital between February 27 and April 15, 2020. Participants: Patients aged [≥]18 years with laboratory confirmed COVID-19 Exposures: AKI (peak serum creatinine increase of 0.3 mg/dL or 50% above baseline). Main Outcomes and Measures: Frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aOR) with mortality. We also trained and tested a machine learning model for predicting dialysis requirement with independent validation. Results: A total of 3,235 hospitalized patients were diagnosed with COVID-19. AKI occurred in 1406 (46%) patients overall and 280 (20%) with AKI required renal replacement therapy. The incidence of AKI (admission plus new cases) in patients admitted to the intensive care unit was 68% (553 of 815). In the entire cohort, the proportion with stages 1, 2, and 3 AKI were 35%, 20%, 45%, respectively. In those needing intensive care, the respective proportions were 20%, 17%, 63%, and 34% received acute renal replacement therapy. Independent predictors of severe AKI were chronic kidney disease, systolic blood pressure, and potassium at baseline. In-hospital mortality in patients with AKI was 41% overall and 52% in intensive care. The aOR for mortality associated with AKI was 9.6 (95% CI 7.4-12.3) overall and 20.9 (95% CI 11.7-37.3) in patients receiving intensive care. 56% of patients with AKI who were discharged alive recovered kidney function back to baseline. The area under the curve (AUC) for the machine learned predictive model using baseline features for dialysis requirement was 0.79 in a validation test. Conclusions and Relevance: AKI is common in patients hospitalized with COVID-19, associated with worse mortality, and the majority of patients that survive do not recover kidney function. A machine-learned model using admission features had good performance for dialysis prediction and could be used for resource allocation.


Subject(s)
COVID-19 , Renal Insufficiency, Chronic , Coronavirus Infections , Acute Kidney Injury
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.26.20073411

ABSTRACT

Coronavirus 2019 (COVID-19), caused by the SARS-CoV-2 virus, has become the deadliest pandemic in modern history, reaching nearly every country worldwide and overwhelming healthcare institutions. As of April 20, there have been more than 2.4 million confirmed cases with over 160,000 deaths. Extreme case surges coupled with challenges in forecasting the clinical course of affected patients have necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods for achieving this are lacking. In this paper, we present a decision tree-based machine learning model trained on electronic health records from patients with confirmed COVID-19 at a single center within the Mount Sinai Health System in New York City. We then externally validate our model by predicting the likelihood of critical event or death within various time intervals for patients after hospitalization at four other hospitals and achieve strong performance, notably predicting mortality at 1 week with an AUC-ROC of 0.84. Finally, we establish model interpretability by calculating SHAP scores to identify decisive features, including age, inflammatory markers (procalcitonin and LDH), and coagulation parameters (PT, PTT, D-Dimer). To our knowledge, this is one of the first models with external validation to both predict outcomes in COVID-19 patients with strong validation performance and identification of key contributors in outcome prediction that may assist clinicians in making effective patient management decisions.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.20.20072702

ABSTRACT

Background: The degree of myocardial injury, reflected by troponin elevation, and associated outcomes among hospitalized patients with Coronavirus Disease (COVID-19) in the US are unknown. Objectives: To describe the degree of myocardial injury and associated outcomes in a large hospitalized cohort with laboratory-confirmed COVID-19. Methods: Patients with COVID-19 admitted to one of five Mount Sinai Health System hospitals in New York City between February 27th and April 12th, 2020 with troponin-I (normal value <0.03ng/mL) measured within 24 hours of admission were included (n=2,736). Demographics, medical history, admission labs, and outcomes were captured from the hospital EHR. Results: The median age was 66.4 years, with 59.6% men. Cardiovascular disease (CVD) including coronary artery disease, atrial fibrillation, and heart failure, was more prevalent in patients with higher troponin concentrations, as were hypertension and diabetes. A total of 506 (18.5%) patients died during hospitalization. Even small amounts of myocardial injury (e.g. troponin I 0.03-0.09ng/mL, n=455, 16.6%) were associated with death (adjusted HR: 1.77, 95% CI 1.39-2.26; P<0.001) while greater amounts (e.g. troponin I>0.09 ng/dL, n=530, 19.4%) were associated with more pronounced risk (adjusted HR 3.23, 95% CI 2.59-4.02). Conclusions: Myocardial injury is prevalent among patients hospitalized with COVID-19, and is associated with higher risk of mortality. Patients with CVD are more likely to have myocardial injury than patients without CVD. Troponin elevation likely reflects non-ischemic or secondary myocardial injury.


Subject(s)
Coronavirus Infections , Heart Failure , Cardiovascular Diseases , Diabetes Mellitus , Ischemia , Hypertension , Coronary Artery Disease , COVID-19 , Death , Cardiomyopathies , Atrial Fibrillation
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.19.20062117

ABSTRACT

ABSTRACT Background: The coronavirus 2019 (Covid-19) pandemic is a global public health crisis, with over 1.6 million cases and 95,000 deaths worldwide. Data are needed regarding the clinical course of hospitalized patients, particularly in the United States. Methods Demographic, clinical, and outcomes data for patients admitted to five Mount Sinai Health System hospitals with confirmed Covid-19 between February 27 and April 2, 2020 were identified through institutional electronic health records. We conducted a descriptive study of patients who had in-hospital mortality or were discharged alive. Results A total of 2,199 patients with Covid-19 were hospitalized during the study period. As of April 2nd, 1,121 (51%) patients remained hospitalized, and 1,078 (49%) completed their hospital course. Of the latter, the overall mortality was 29%, and 36% required intensive care. The median age was 65 years overall and 75 years in those who died. Pre-existing conditions were present in 65% of those who died and 46% of those discharged. In those who died, the admission median lymphocyte percentage was 11.7%, D-dimer was 2.4 ug/ml, C-reactive protein was 162 mg/L, and procalcitonin was 0.44 ng/mL. In those discharged, the admission median lymphocyte percentage was 16.6%, D-dimer was 0.93 ug/ml, C-reactive protein was 79 mg/L, and procalcitonin was 0.09 ng/mL. Conclusions This is the largest and most diverse case series of hospitalized patients with Covid-19 in the United States to date. Requirement of intensive care and mortality were high. Patients who died typically had pre-existing conditions and severe perturbations in inflammatory markers.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL